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Abstract  – The quality factor (Q) spectrum of a piezoceramic resonator - as a Q-factor frequency 

dependence for the specific resonator and its vibrational modes, not for just piezoceramic material it’s made 

of - was considered, determined under baseline low-excitation level, and analyzed with a new approach 

proposed. It was experimentally confirmed the theoretical prediction [1] that the resonator  

Q-factor increases with frequency nearly linearly from the resonance reaching its maximum significantly 

closer to the antiresonance. For the iconic industrial PZT-5A piezoceramic the antiresonance-to-resonance 

quality factor ratio is 1.8…2.4 as much, depending on the type of vibration. As the theory states, this effect is 

directly related to the piezoelectric “losses” in piezoceramics, typically expressed as an imaginary part of the 

piezocoefficient, which has a unique property of lowering the total cumulative losses in a resonator at 

certain specified frequencies. 

Based on the electro-mechanical Q-factor (EMQ) concept and experimental technique, a new direct, 

analytical and simple method was proposed, developed and used for the piezoelectric loss factor  γ  

determination at just a single resonance frequency – it requires the resonance Q-factor and it’s frequency 

derivative at the resonance, or the same the first and second frequency derivatives of the immittance phase 

at the resonance. Experimentally determined  γ  is close to near 0.8 of its upper (positive) phenomenological 

limit in the conventional PZT-5A at different vibrational modes verified.  

The piezoelectric “loss” factor, getting higher and theoretically reaching closer the upper limit, can provide 

extremely high value of the Q-factor (nearby the antiresonance) with an order of magnitude EMQ increase. 

That paradox fact for the piezoelectric “losses” is a novel way of improving the piezoceramic performance 

and operation.  

Keywords: piezoceramics, piezoresonator, energy losses, quality Q-factor, piezoelectric loss factor, resonance and 

antiresonance frequencies. 
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I. INTRODUCTION 

Depending on the specific application, a low Q-factor piezomaterial/transducer with wider bandwidth is 

needed for sensors for higher resolution, and to the contrary as much as possible high Q-factor is needed for 

power transducers, when the heat generation due to losses restricts materials from obtaining the highest 

vibrational power density. Losses in piezoelectric materials phenomenologically have three components, 

namely, dielectric, elastic, and piezoelectric corresponding respective material coefficients with real and 

imaginary parts [2]. Only resonator quality factors at the resonance (Qr) and antiresonance (Qa) frequencies 

have been sufficiently studied recently.  In [3,4] they were analytically derived, and later it was 

experimentally confirmed in [5,6]. Further, the piezoresonator EMQ concept was proposed and developed 

[1], with the Q-factor spectrum theoretically predicted – actually at an arbitrary frequency inside and 

outside the transducer working bandwidth; however, that has not been experimentally supported yet for 

the baseline classical low-level excitation.  

Several methods of Q-factor measurement are known based on its definition and derivatives – baseline 

method through the decay time, as a phase frequency derivative at the phase zero-crossing, etc. A classical 

method, like the one with ±3(6) dB cutoff frequencies on the immittance (power) curve, is usually used to 

measure the frequency pairs around the resonance or antiresonance peak. The resonance and anti-

resonance are both electromechanical resonances (anyway, the resonance is more “mechanical” which 

occurs basically under a short-circuit electrical condition), and both generate large displacement amplitudes, 

which can be used for actuator/transducer applications. The major difference is the driving conditions - low 

voltage and high current drive at low-impedance resonance versus high voltage and low current drive at 

high-impedance antiresonance. In most cases of PZT (lead zirconate-titanate) piezoceramics, Qa is higher 

than Qr (closer to the generalized Qm used for industrial piezomaterial characterization), in other words the 

antiresonance operational mode as known has a higher efficiency [7]. 

 

A more advanced and widely used iterative automatic analysis of the resonance impedance spectra was 

proposed in [8] by comparing the predicted frequency dependence of impedance with an impedance 

spectrum measured at three points around the resonance on a sample of appropriate predetermined 

geometry and dimensions to derive complex elastic, dielectric, and piezoelectric properties (losses) of the 

resonator.   

 

A new method was proposed for determining the electro-mechanical quality factor at frequencies other 

than the resonance and antiresonance points, which requires measurements of the electrical impedance, 

with their further computational treatment [9-11].  The mechanical quality factor is initially modeled there 

by the admittance phase and all three losses in piezoelectric materials. The existence of the maximum value 

of the mechanical quality factor at neither the resonance nor antiresonance frequencies was stated, 
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however the required and used supposition on the phase-frequency characteristic looks problematic for the 

method veracity - in the analysis, it was supposed a symmetric impedance phase characteristic inside the 

bandwidth, with constant slope ratios. 

An “energy” method to determine the Q-factor spectrum developed mostly for high excitation levels was 

developed in [12,13] considering the transducer local velocity, temperature and electrical power 

consumption. The transducer presumably was under strong excitation level with nonlinear effects, and also 

the transducer end, where the displacement was measured, is not necessarily maximum displacement 

inside the transducer body, unless it’s the resonance. Nevertheless, it was stated [13] that the trend shows 

the tendency of the Q-factor to decrease as the frequency approaches a mid-point resonance inside the 

bandwidth. The trend could not be uncovered with present impedance technique, while the measurement 

at a single frequency without frequency sweeping is a benefit of the method.  

 

In general, piezoceramics of a perovskite type have unique and intriguing properties. Just to mention a 

Nobel Prize in Physics (J.G.Bednorz and K.A.Muller) in 1987 for discovery of high-temperature 

superconductivity in perovskite ceramics (with so grainy inhomogeneous structure), that can not be fully 

explained theoretically so far. If superconductivity means an electrical current without losses, there is a sort 

of similar effect potentially allowing to get the vibration without (or extremely low) losses in conventionally 

lossy acoustical systems, such as piezoceramics. The effect of piezoelectric losses in piezoceramics is 

paradoxical as well - the piezoelectric “loss”, as one of the energy loss components providing the 

piezocoefficient imaginary part, reduces the total losses in a resonator  – the actual dissipation at certain 

frequencies is significantly lower compared just to the sum of mechanical and electrical losses, under the 

combined electro-mechanical piezoresonator excitation with the same resonant output – and a very low loss 

resonant vibration is possible in traditionally lossy piezoelectrics.  

 

The EMQ is defined [1] as quality factor �̃� = 𝜔
𝑊𝑘𝑖𝑛

𝑃 
  for a resonator under electrical excitation. Taking into 

account the internal losses  𝑃 = 0.5 |𝑉|2𝑅𝑒(𝑌), then for the effective kinetic energy Wkin vibration velocity 

veff (in general, velocity maximum not necessary is on the piezoelement boundary) can be expressed as   

𝜔 𝑚 𝑣𝑒𝑓𝑓
2 = 2 �̃� 𝑃 ,  where m is the resonator mass, and V is the voltage amplitude applied to the 

piezoelement. It means that the mechanical/acoustical energy efficiency (ex.: piezomotors operation, 

transducer transmission efficiency, etc.) for the specific piezoelement and frequency is proportional to the 

voltage applied squared, active transducer conductance and specifically EMQ �̃� – irrespectively the 

resonator is electrically or mechanically/acoustically loaded. If the frequency is a resonance/antiresonance 

(when their impedance is pure active), the excitation source energy losses coincide with the internal 

piezoelement losses; if it’s not a resonance – the internal piezoelement dissipation (ultimately its 

temperature under operation) still is determined by  𝑅𝑒(𝑌 𝜔⁄ ) , but additionally for the source of excitation, 
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there are the reactive losses in it caused by the reactive energy circulating between the piezoelement and 

source. 

So, the transducer mechanical/acoustical efficiency, as to the transducer internal parameters, is determined 

by the product of the internal losses (ultimately heat) and EMQ �̃� factor – particularly, higher EMQ �̃� , lower 

transducer losses/temperature; all for the same effective vibration velocity of the transducer. And it’s true 

at any frequency (just to emphasis - for the internal transducer performance), not necessary the resonance, 

or antiresonance, but inside and outside the resonance/antiresonance interval. �̃�  is not limited by just the 

piezomaterial Qm , or even Qr  and Qa  quality factors.   

 

The conventional equivalent circuit can not adequately explain the resonant performance of a real piezo-

resonator [14]. In general, with the standard series (Ls-Cs-Rs) and parallel (Cp-rp) branches in it, the ratio of 

the antiresonance-to-resonance quality factors analytically is described by the expression  

                                                          
𝑄𝑎

𝑄𝑟
≅

𝐹𝑎

𝐹𝑟
 

1

1+ (
𝐹𝑎
𝐹𝑟

 − 
𝐹𝑟
𝐹𝑎

) 𝑄𝑟 𝛿
                                                                ( 1 ) 

for  δ2 << 1 , which shows that practically always Qa < Qr , and even without accounting the dielectric losses  

the ratio  Qa / Qr   can not exceed 1+0.5k2 , or practically 1.25 maximum. For this reason the equivalent 

circuit approach is not appropriate as there are numerous data with the actual ratios Qa / Qr   reaching 2…5 

times [6]. 

 

II. METHOD FOR EMQ-SPECTRUM DETERMINATION 

 

Based on the Q-factor definition [1], two relevant methods were proposed and considered for ultimately 

EMQ determination. The first method is based on two frequencies of maximum (f1)/minimum (f2) of the 

imaginary immittance part (susceptance B for the resonance (Fres), and reactance X for the antiresonance 

(Fant)). For the generalized Q-factor of a resonating piezoelement 

                                                           𝑄(𝐹𝑜) ≅  
�̅�

|𝑓1−𝑓2|
     ,                                            ( 2 ) 

where  �̅� = 0.5 (f1 + f2)  is close to Fres  , or Fant  , frequency, and  ∆𝐹𝑄 = |𝑓1 − 𝑓2|  is the frequency bandwidth. 

The second method is based on the phase frequency derivative at a zero phase crossing taking place for the 

admittance at resonance, and for the impedance at antiresonance. Being defined as a ratio of imaginary-to-

real immittance parts, the immittance phase is to be determined in close vicinity of the resonance (or anti-

resonance) as   ∆𝜑 ≅ ±2𝑄 ∆𝑓/𝐹𝑜 , where Δϕ and Δf are the phase and frequency deviations out of the zero 

phase frequency, then      

                                                         𝑄(𝐹𝑜) ≅ ±0.5 𝐹𝑜  (
𝜕𝜑

𝜕𝑓
)

𝑓=𝐹𝑜

                                          ( 3 )                      
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where Fo is the zero-phase crossing resonant frequency, generalized for Fres  , or Fant  . The sign +/- depends 

on the phase-frequency slope at the resonance/antiresonance, which is opposite for the impedance/ 

admittance.  Particularly, the impedance phase has a positive slope at the resonance and negative one at 

the antiresonance, and vice versa for the admittance. Just to notice that the phase is traditionally used on 

this matter, however the tangent of phase has the same properties but with some wider frequency linearity 

– in this sense both the parameters will be used interchangeably for the method. 

Practically, both methods are not “continuous” and are based on discrete data taken from Impedance 

Analyzer versus frequency, but it can be controlled and made in significantly narrow frequency swiping.  

Both methods are explained in details as presented in Fig. 1, for a piezoresonator made of soft PZT-5A 

piezoceramic, having relatively low Q-factor, chosen for the method evaluation. The impedance data, and its 

respective derivatives, were determined for a thick disk (type II; see also Fig. 3 and Fig. 7) resonator with a 

radial vibrational mode. The gray arrows and circular area show the key frequencies for the Q-factor 

measurements. For the used swiping settings the difference between the two methods in Q-factor 

determination is less than 5% . 

 

Figure 1. Basics for the 𝑄-factor 

determination with typical impedance 

characteristics: resistance R, reactance X 

and the phase (with its tangent) in a 

vicinity of the antiresonance with in-

parallel digitally connected (added) 

capacitance (C/Co = 2.1); frequency 

discretization 55 Hz.  

 

 

 

 

Determining the EMQ-factor spectrum of a piezoelectric resonator and respective measurement procedure 

are based partly on the following Statement.  

The Statement is formulated as: 

In an electro-mechanical resonator under electrical continuous-wave excitation, the resonance frequency 

and corresponding resonance Q-factor Qres with a connected in series reactive element (capacitance, or 
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inductance) are respectively equal to the antiresonance frequency Fant = Fres ≡ Fo and corresponding 

antiresonance Q-factor  Qant = Qres ≡ QC/L with a connected in parallel the same reactive element.  

More details on the Statement application can be found in [15], and the proof is based on the following. 

The resonance corresponds to a short-circuit condition of a resonating electro-mechanical system, and the 

antiresonance corresponds to an open-circuit condition - under both conditions ultimately there is the same 

resonating electro-mechanical system with in-parallel connected reactive element. The condition 

determines a pole for the complex resonance frequency (real and imaginary parts), with consequently equal 

real and imaginary parts of the corresponding complex resonance and anti-resonance frequencies - with 

equal frequencies itself, and with equal respective quality factors.   

In case of respectively connected inductance, the equalities for the frequencies and Q-factors take place in 

the frequency range outside the resonance-antiresonance intervals – between lower- and higher-order 

adjacent harmonics, particularly between 1 and 3 harmonics.  

As a reference for the piezoresonator bandwidth, in particular for the lowest fundamental mode, the 

antiresonance frequency shift with in-parallel connected capacitance C  is   
∆𝐹𝑎𝑛𝑡

𝐹𝑎
≅ −𝛿𝑟

𝐶 𝐶𝑜⁄

1+𝐶 𝐶𝑜⁄
 , and the 

resonance frequency shift with in-series connected capacitance C  is    
∆𝐹𝑟𝑒𝑠

𝐹𝑟
≅ +𝛿𝑟

𝐶𝑜 𝐶⁄

1+𝐶𝑜 𝐶⁄
  , both satisfying  

the Statement.  

 

 

Fig. 2. Schematic for the method of EMQ  

Q-factor spectrum determination. 

C&L are imitation of the reactive components 

connected to the piezoresonator. 

 

 

 

 

 

 

 

 

 

 

An original method for the resonator EMQ spectra determination was proposed and demonstrated, 

particularly based on the Statement procedure. A schematic diagram for the method is presented in Fig. 2. 

There are two ways to measure EMQ – as a resonance or anti-resonance Q-factor, with in-series or in-

parallel connected reactive element C, or L, respectively. In the method, C (and L) is just a digitally imitation 
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intermediate parameter in the ultimate relationship between EMQ and resonant frequency, providing a shift 

in immittance phase.  

 

Further detailed description of the method is provided for the first case (Fig. 2), with an in-series connected 

capacitance for certainty, and the second one will be further easily clear based on the diagram. As to the 

measurements procedure, just recording of the complex impedance (R&X), or admittance (R&B), data is 

needed in the frequency range under investigation, with maximum/sufficient resolution, with at least 15…25 

frequency points inside the frequency   ~Fr /Qr  interval of interest.  

Following the schematic diagram, Step 1 is the only piezoresonator impedance measurement, the other 

following steps are just computer performed and driven, and ultimately can be fully executed by a 

respective software. Next, the frequency ω-factor multiplication is needed just to eliminate the linear 

frequency effect, for the “clear” resonance term not disturbed by the ω-factor in the resonator capacitive 

component, reducing methodological error for the EMQ determination.  

 

The “near” resonance EMQ �̃� factor determination covers the frequency range for the lower-resonance and 

inside the resonance-antiresonance interval.  When the R = ReZ and X = ImZ  impedance components are 

taken, both are multiplied by ω; further calculate �̃� = �̇� - 1/Cser ,  where Cser is the connected in-series 

reactance which can be positive (for the resonance-antiresonance interval) or negative (for the lower-

resonance frequencies) as an equivalent inductance. Then transform the components �̃� = �̇� + 𝑖�̃�  into 

inverse admittance �̅� with the components �̅� & �̅�, and finally find two extremes of �̅�, and calculate QC/L and 

then EMQ �̃� factors at the frequency Fres  spectrum point according to (2) and (5).   

As an alternative calculate the �̅� phase through the ratio �̅�/�̅�, find zero-crossing resonance Fres with two 

adjacent frequency points for the phase frequency derivative, and finally determine the same �̃� factor at Fres  

by the phase method according to (3) and (5). Then repeat the steps under variation of the connected 

capacitance with some step, and finally calculate complete EMQ spectrum as ultimately  �̃�(𝑓).  

 

One of the largest accuracy components of the proposed methods is basically determined by the frequency 

discretization, taking place in a real Impedance Analyzer operation.  

Lets consider the first method when the Q-factor is determined based on two peaks of the frequency 

extremes of the imaginary part of immittance. If that peaks frequency difference (f2 – f1  as in (2)) is divided 

on N intervals (absolute frequency discretization  ~Fo / (NQ) , where Q is the current Q-factor under 

measurement (or the highest value for the estimations), then the average relative error in Q-factor 

determination is equal to N-1, for example for N= 15 points the error is near 6%. That particular means that 

the Q value variation within that 6% (or within corresponding 10 absolute units at the highest determined 

experimental Q-factor ~180) can not be reliably detected by this method. Note that the latter can be 
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improved with a conventional inter-points interpolation for more precise determination of the frequency 

extremes. 

For the Q measurement with the phase method (3), there is an opposite effect with the upper limit absolute 

frequency discretization as  ~Fo / (3Q) – not wider because of the phase non-linearity, and at the same time 

not too small because of decreased accuracy caused by random noise in the phase derivative determination. 

The latter can be traditionally reduced with the time averaging. The Q-factor accuracy in this case is 

determined as  √2 𝑑𝜑 ∆𝜑⁄  , where 𝑑𝜑  here is the phase (noise) std. deviation, or instability, and  ∆𝜑  is the 

measured phase difference for the derivative   |
∆𝜑

∆𝑓
| ≅ 2

𝑄𝐶/𝐿

𝐹𝑟𝑒𝑠
  determination, so that a higher accuracy is 

provided for the tangent of phase, inside its much wider frequency interval with maximum linearity (Fig. 1).  

To finalize the EMQ spectrum determination procedure, the following basic relationships were derived to 

extract the EMQ factor. As in an elementary case of LC-resonance circuit, with connected in parallel or in 

series L and C components, the resonant frequency is  ωo
2 = 1/LC under the condition  ωo L = 1/ ωo C  of 

equal imaginary parts of impedances (admittances). At that frequency, the total circuit immittance is active, 

the internal energy is fully circulating between L and C reactive elements, and no energy circulating between 

the circuit and source of excitation. In this case the system Q-factor is determined by the ratio of 

accumulated energy in one of the LC components to the total dissipating energy, all averaged for the period. 

By definition based on the energy balance [1] in the electromechanical resonating piezoelectric the EMQ-

factor is     �̃� = 𝜔
𝑊𝑘𝑖𝑛

𝑃
= 𝜔

 𝜌|𝑣𝑒𝑓𝑓|
2

 

 |𝑉|2 Re𝑌
 , where   veff is the effective vibration velocity of the resonating 

body.  When an ideal, with no losses, reactive (C or L) element is connected in parallel (or in-series) to the 

resonator, the “cumulative” resonant QC/L – factor is determined as  

                             𝑄𝐶/𝐿 = 𝜔
𝑊𝑒𝑙+𝑊𝑘𝑖𝑛

𝑃
= 𝜔

 |𝑉|2|Im𝑌/𝜔|+ 𝜌|𝑣𝑒𝑓𝑓|
2

 

 |𝑉|2 Re𝑌
= |tan𝜑| + �̃� ,                ( 4 ) 

where averaged for a period Wel  is the electric energy stored inside the “piezoresonator + reactive element” 

resonating system, and circulating inside the system, between the resonator and reactive element (at the 

resonant frequency of the system), with the losses just inside the resonator. Note that under the limit 

condition of unpolarized ceramic with no motion the measured Q-factor is just inverse dielectric loss factor. 

The tangent of the phase angle is determined as  |tan𝜑| =
|Im𝑌|

Re𝑌
=

|Im𝑍|

Re𝑍
  at any particular frequency.   

Then finally the EMQ-factor of the piezoresonator can be determined as 

                                                         �̃�(𝑓 = 𝐹𝑜) = 𝑄𝐶/𝐿(𝐹𝑜) − |tan𝜑(𝑓 = 𝐹𝑜)|                                  ( 5 ) 

The first term in (5) reflects the electrical energy on average stored in the “resonator + reactive element”,  

the latter term is a module of the phase angle tangent, and its value can be also directly measured by an 



9 
 

Impedance Analyzer as well, and it’s called there “Q-factor” however it just refers to a simple (elementary) 

resonating circuit (of LC type, etc.). 

Further a simplifying expression  tan𝜑 ≈ 𝜑  is used just for  φ << 1 in a resonance vicinity close to the zero-

phase. Then the system Q-factor can be determined as   

                                                       𝑄𝐶/𝐿(𝐹𝑜) ≅ ±0.5 𝐹𝑜  (
𝜕𝜑

𝜕𝑓
)

𝑓=𝐹𝑜

  .                                   ( 6 )          

As follows from ( 5 ), under all conditions must be  �̃� > 0  and  𝑄𝐶/𝐿 > |tan𝜑| . Also note that (6) means that 

QC/L is not necessary a smooth function of frequency, specifically at the resonance and antiresonance with 

left- and right-hand different frequency derivatives, whereas the EMQ(f) function is smooth and 

differentiable.  

 

III. EXPERIMENTAL DATA 

A. Samples 

For the experiments, a conventional PZT-5A (Morgan Advanced Materials, Bedford, OH) soft piezoceramic 

was used, most popular in the industry. To cover broader possible configurations of the piezoelement types 

and vibrational modes, two aspect ratios of thinner and thicker disc resonators with the radial vibration 

“soft, or unstiffened” kp-mode, and a rod resonator with the longitudinal vibration “hard, or stiffened” k33-

mode (Fig. 3) were analyzed in the experiment – all with close fundamental resonance near 110 kHz [16]. 

The piezoelements have Ag-fired electrodes and were conventionally polarized in oil.  

The disc resonator were fixed gently at their center to provide the radial vibrations; two thin wires were 

micro-soldered to the rod electrodes, and the rod was held by just the wires during the measurement to 

avoid extra fixing/distortion dissipation caused by unwanted vibrational modes. The wire and contact 

resistance in the fixture was significantly much less than the piezoresonator impedance at the resonance – 

just to note, otherwise the measured resonance Q-factor and especially tangent of piezoelectric losses 

experience significant distortion [14]. 

 

Figure 3. Piezoelements used is the experiments: 

thin disc (further as type I, with kp-mode),  

thick disc (type II with kp-mode), and  

rod (type III with k33-mode). 
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  Table. Basic parameters of piezoelements                                              

Parameter Thin disc,  
Type I 

Thick disc,  
Type II 

Rod,  
Type III 

Dimension, mm Ø20 x H1 Ø20 x H6 Ø11 x H7 

Piezocoefficient  d33, pC/N 390 390 440 

Capacitance Co, pF 4400 700 66 

Dielectric loss factor δ (1kHz), % 1.5 1.7 1.6 

Res.-antires. interval δr , % 15.3 18.2 39.0 

Electro-mech. coupling coeff. kp =0.561 kp =0.602 k33 =0.736 

Res. quality factor Qr   (𝑄𝑟
−1, %)  91  (1.10) 85  (1.17) 78  (1.28) 

Ratio Qa /Qr (n=1) 1.8 1.8 2.4 

Max piezoelectric loss factor γo , % 2.65 2.72 2.26 

Piezoelectric loss factors ratio γ/γo 0.77 0.78 0.75 

 

The basic standard parameters of the piezoelements are presented in Table. Note that in soft PZT5A the 

dielectric loss factor slightly increases with frequency near 1.35 at a hundred kHz compared to the standard 

1 kHz measurement frequency. The low field excitation intensity (maximum 0.5 V applied to the resonator) 

was used in all the measurements presented. 

 

B.  Piezoresonator Q-factor spectrum – experimental data 
 

Experimental data for the EMQ-factor spectrum are shown in Fig. 4 A,B,C for the fundamental radial and 

longitudinal modes, and in Fig. 5 A,B for their third harmonics. At the fundamental resonance, the 

characteristic ratio  Qa / Qr   is within 1.78…1.80  for both thin and thick discs; the ratio Qa / Qr   for the rod 

resonator is higher up to 2.4, as predicted by the theory estimation [1] for “soft” and “hard” vibrational 

modes.  Maximum Q-factor value is located inside the resonance-antiresonance frequency interval, much 

closer to the antiresonance frequency. That maximum exceeds adjacent antiresonance Qa value just within 

near 9% at most, larger for the “hard” k33-vibrational mode. 
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Figure 4 A-C. Experimental frequency spectra of 

EMQ �̃� factor in vicinity of the fundamental mode:  

radial (soft) kp-mode of a thin disk (A);  

radial (soft) kp-mode of a thick disk (C);  

longitudinal (hard) k33-mode of a long rod (B).  

See Fig. 5A for the data legend. 

 

 

 

At the frequencies lower the fundamental resonance, for all resonator types, the EMQ decreases when 

frequency is getting lower, proportionally to the frequency squared, reaching just several units at tens kHz. 

The thin disc (type I) resonator has most “clear” radial mode resonance spectra, for this reason it was taken 

for high-frequency EMQ analysis (Fig. 5A). At frequencies higher than the fundamental anti-resonance, there 

is an EMQ minimum, with its value 17 taking place at 193…203 kHz; then EMQ is going up at the 3rd 

harmonic with its resonance near 262 kHz. As was estimated from the theory [1] based on determined 

material parameters (Table) – the minimum �̃� is near 16 at high frequencies between harmonics, 

independently on the harmonic order. It coincides with even order harmonics which are piezoelectrically 

inactive.  
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Figure 5 A,B. Extended Q-factor spectra of the  thin 

disk type I with radial (soft) kp-mode (A); and 

frequency spectrum of EMQ �̃� factor in vicinity of 

the third harmonic of longitudinal (hard) k33-mode of 

the long rod type III (B).     

Data legend is presented in Fig. 5A. 

 

 

 

EMQ spectra at the 3rd harmonics (Fig. 5), as was predicted [1], shows very close Q-factor values with the 

ratio  Qa / Qr  ~ 1 , that basically is caused by lower effective coupling factor k2 / n2 , where n is the harmonic 

number. The only difference is that for a rod k33-mode resonator the third harmonic Q-factor is near the 

same as Qa at the fundamental mode, and for a disc kp-mode resonator is near the same as Qr at the 

fundamental mode.  

 

 

Figure 6 A,B. Impedance module IZI and phase ϕ, including module Itan ϕI, of the thin disk piezoresonator (type I) at the 

fundamental (A) and third (B) harmonics of kp-type radial mode.      

 

   

Figure 7.  Impedance module IZI and phase ϕ, 

including module Itan ϕI, of the thick disk 

piezoresonator (type II) at the fundamental harmonic 

of kp-type radial mode. 
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 Figure 8 A,B.  Impedance module IZI and phase ϕ, including module Itan ϕI, of the rod piezoresonator (type III) at the 

fundamental (A) and third (B) harmonics of longitudinal k33-type mode.      

 

Basic primary impedance characteristics used in the EMQ determination for all investigated resonators and 

vibrational modes are shown in Fig.6 – Fig.8. At the fundamental mode there is a significantly different 

phase slope at the resonance and antiresonance frequencies, the latter is near 2 times steeper. 

 

IV. A METHOD OF THE PIEZOELECTRIC LOSS FACTOR DETERMINATION AT  

       A SINGLE RESONANCE FREQUENCY  

A. Piezoelectric loss factor determination through the EMQ-factor frequency  

    derivative at the resonance. 

One of the difficulties in piezoelectric loss factor determination is that it basically requires knowing all other 

(dissipation) parameters, that can not be determined exactly at, or close enough to the same conditions, 

such as for example the dielectric loss factor which can be highly dispersive and typically is determined at a 

quasi-static (low) frequency. The present EMQ approach and data analysis revealed the effect which 

specifically ties only mechanical and piezoelectric loss factors with the EMQ factor at the resonance. A new 

method for the piezoelectric loss factor determination can be derived based on the EMQ concept developed 

in [1] and is demonstrated based on the experimental data presented.  

The method relates to the total losses peak asymmetry at the piezoelement resonance – the effect earlier 

described in [17]. As follows from [1] for the EMQ factor: 

                                                 
1

�̃�(𝑓)
≅

1

𝑄𝑟
− 2𝜒 (2 𝛾 −

1

𝑄𝑟
)  + 2

𝜒2

𝛿𝑟
𝛿   ,                                         ( 7 ) 

where  χ = f / Fr -1  is the resonance frequency displacement and  δr = Fa / Fr -1 is the relative resonance-

antiresonance frequency interval, then  the piezoelectric lass factor can be determined as                                  
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                                    𝛾 ≅
1

2 𝑄𝑟
−

𝐹𝑟

4
 [

𝜕�̃�−1

𝜕𝑓
]

𝑟
=  

1

2 𝑄𝑟
(1 +

𝐹𝑟

2 𝑄𝑟
 [

𝜕�̃�

𝜕𝑓
]

𝑟
)  ,                                         ( 8 ) 

further transformed into two convenient and useful expressions     

                       𝛾 =  
1

2 𝑄𝑟
(1 +

1

2 
 ∆𝐹𝑄𝑟

[
𝜕�̃�(𝑓)

𝜕𝑓
]

𝑟
) =  

1

2 𝑄𝑟
(1 +

1

2 
 [

𝜕(�̃�(𝑓) 𝑄𝑟⁄ )

𝜕(𝑓 𝐹𝑟⁄ )
]

𝑟
)   .                 ( 9 ) 

For an easy interpretation of the method based on (9), the term with the derivative equals to the absolute 

EMQ variation within a half bandwidth (Qr factor; see also Fig. 1) at the resonance. It’s completely 

determined by the piezoelectric loss factor, together with just (mechanical) resonance Q-factor, and no 

dielectric loss factor is involved. Role of the Q-factor derivative in the main expression (8)-(9) significantly 

prevails the pure “mechanical” loss factor, and hence needs to be determined more accurately. So as follows 

from (9), the piezoelectric loss factor is determined just knowing the quality factor and its derivative at the 

resonance frequency (Fig. 4) – determined values are presented in Table.  

As known [9], magnitude of the piezoelectric loss factor is restricted  IγI < γo , and for PZT-5A it can not 

exceed max  γ < ~0.025 depending on the vibrational mode. The determined γ  values agree well with the 

upper limitation, but reaching it close to 0.80. Note that theoretically for the case of zero piezoelectric loss 

factor the EMQ-factor frequency derivative at the resonance is negative, as schematically shown in Fig. 5A 

(yellow dashed line). 

 

As an accompanying effect, with a similar approach based on (7), the dielectric loss factor at the operation 

frequency can be determined just based on the measurements at the resonance and antiresonance - 

knowing the EMQ quality factor derivative at the resonance frequency, and the Q-factor “average” in the 

resonance-antiresonance interval (Fig. 5):  

                                             2𝛿𝑟 (2 𝛾 −
1

𝑄𝑟
− 𝛿)  ≅

1

𝑄𝑟
−

1

𝑄𝑎
  ,    then                               ( 10 ) 

                                        𝛿 =
1

2 𝑄𝑟
  ([

𝜕(�̃�(𝑓) 𝑄𝑟⁄ )

𝜕(𝑓 𝐹𝑟⁄ )
]

𝑟
– 

1−𝑄𝑟 𝑄𝑎⁄

𝛿𝑟
)  .                                                 ( 11 ) 

Based on the actual  �̃�(𝑓)  data of Fig. 4 it means that the dielectric loss factor is determined by two 

frequency derivatives of EMQ at the resonance vs. effective Q-factor variation inside the resonance-

antiresonance interval.  

As an estimation, the piezoelectric loss factor is  𝛾 ≅  0.020…0.022  for all piezoresonators’ configurations 

investigated, and this loss factor is the highest in magnitude among other mechanical and dielectric loss 

factors (Table). 
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Comparing the proposed method with the most advanced iterative method [8], the latter is a pure 

mathematical procedure, and physically it’s like a “black box” – it can get any result, and there is no internal 

procedure to verify it, under influence of an unwanted local resonance in relatively wide frequency range 

required for the iteration.  To the contrary, in the current method just the EMQ frequency slope, or actually 

immittance phase derivatives, is a measure of  γ  strictly at the resonance frequency. 

 

B. Piezoelectric loss factor determination through the second frequency 

     derivative of the phase at the resonance. 

There is another aspect of the piezoelectric loss factor determination based on the supposition that it can be 

fully described by the immittance phase, including its frequency derivatives, like the Q-factor (3) 

determination method. 

In general for a specific resonator at a certain vibrational mode, a set of the phase functions (Fig. 9) is fully 

described as a  ϕ(f, Fres(C/L))  two-dimensional series of two frequency variables, where Fres is the  frequency 

of resonance with a zero-phase (local resonance with ϕ = 0 for resonator impedance with in-series connected 

reactive element C/L). Based on (3) and (5), under that condition with  𝑄𝐶/𝐿(𝐹𝑟𝑒𝑠) ≅ 0.5 𝐹𝑟𝑒𝑠  (
𝜕𝜑

𝜕𝑓
)

𝑓=𝐹𝑟𝑒𝑠

  , 

then it can be derived                                                                

                  [
𝜕�̃�( 𝐹𝑟𝑒𝑠)

𝜕𝐹𝑟𝑒𝑠
]

𝑟
= ±0.5 (

𝜕𝜑

𝜕𝑓
)

𝑓=𝐹𝑟

 ± (
𝜕𝜑

𝜕𝑓
)

𝑓=𝐹𝑟

+ 0.5 𝐹𝑟 [
𝜕2𝜑(𝑓, 𝐹𝑟𝑒𝑠)

𝜕𝑓 𝜕𝐹𝑟𝑒𝑠
]

𝑓= 𝐹𝑟𝑒𝑠
𝐹𝑟𝑒𝑠= 𝐹𝑟

              ( 12 ) 

for the right- and left-hand vicinity of the piezoelement resonance with corresponding immittance phase, 

and finally for both Z- and Y-phase representation we have 

                                     𝛾 ≅
1

2 𝑄𝑟
(2.5 +

𝐹𝑟
2

4 𝑄𝑟
 [

𝜕2𝜑(𝑓, 𝐹𝑟𝑒𝑠)

𝜕𝑓 𝜕𝐹𝑟𝑒𝑠

]
𝑓= 𝐹𝑟𝑒𝑠

𝐹𝑟𝑒𝑠= 𝐹𝑟−

 ) ≅                               ( 13 ) 

                                 ≅
1

2 𝑄𝑟
(0.5 +

𝐹𝑟
2

4 𝑄𝑟
 [

𝜕2𝜑(𝑓, 𝐹𝑟𝑒𝑠)

𝜕𝑓 𝜕𝐹𝑟𝑒𝑠

]
𝑓= 𝐹𝑟𝑒𝑠

𝐹𝑟𝑒𝑠= 𝐹𝑟+

 )                                    ( 14 ) 

Note that the difference between the right- and left-hand second-order mixed frequency derivatives of the 

phase at the resonance is equal   8𝑄𝑟 𝐹𝑟
2⁄ ( ≅ 0.072 𝑘𝐻𝑧−2  for the thin disc). 

In an experiment with the thin disc resonator (type I ), the impedance was measured and a set of the phase 

branches (as the ratio tanϕ = X/R) near the resonance, with in-series connected reactive element C (negative 

for connected inductance L), were determined as shown in Fig. 9. For the specific calculations, the imitation 

inductance L is normalized by the expression -L = 1/(-C) ωo
2 with negative capacitance C, where ωo is the 

nearby resonance frequency taken just for reference – it simplifies the calculations making the resonance 

frequencies near symmetric to the  ±C values.  
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Fig. 9.  Impedance phase (X-to-R 

ratio) with in-series connected 

reactive element C, or L, vs. 

frequency for a set of Co /C ratios 

with corresponding resonances  Fres  

of zero-crossings. Thin disc 

resonator, type I. The expressions of 

linear interpolation are shown in 

respective colors.  

 

 

 

The first phase derivative vs. corresponding zero-crossing frequency was calculated, as shown in Fig. 10. 

Based on this data, the second phase derivative was determined as 0.041 kHz-2 and 0.111 kHz-2  on the right- 

and left-hand sides of the resonator resonance frequency, respectively. There is a jump in the derivative of  

𝜕𝜑 𝜕𝑓⁄ (𝐹𝑟) over Fres  frequency exactly at the resonance. With Qr = 93 at Fr = 101.4 kHz, the calculated (13, 

14) piezoelectric loss factor is γ = 0.020. Along with predetermined dielectric loss factor  δ = 0.017 (11), the 

maximum allowed piezoelectric loss factor value was estimated  γo = 0.025, which corresponds to the ratio  

 γ / γo ≈ 0.80 . 

 

 

Fig. 10. The first and second (a respective slope 

[1/kHz2] indicated) frequency derivatives of the 

phase shown in a vicinity of the resonance. Thin 

disc resonator, type I. 

 

 

 

 

 

 

 

 

 

V. DISCUSSION 

The basic topic was investigated above about the EMQ spectra for different resonator types in a wide 

frequency range, particularly inside and near the resonance-antiresonance frequency interval. For a broader 
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EMQ characterization it will be discussed for a loaded resonator and shown how the EMQ reaches 

frequencies well below the lowest fundamental resonance, and what the minimum EMQ value(s) between 

two adjacent harmonics is. Another mostly theoretical aspect is discussed here what happens to EMQ when 

specifically the piezoceramic polarization is reaching zero. 

If a piezoresonator is electrically or mechanically (acoustically) loaded, the resonator internal loss (ultimately 

heat) is anyway determined by the resonator EMQ factor, not the Q-factor of the whole loaded resonator 

accounting also the electrical/acoustical energy output. As was experimentally confirmed the maximum 

EMQ takes place very near the antiresonance, but a practical recommendation can be made to use the 

antiresonance with no reactive current component to minimize the total losses, including specifically the 

losses inside the electrical power source. 

According to [1], the EMQ exactly at the (mechanical) resonance is expressed as  �̃� ∝  
𝑘2𝑄𝑟

2

𝛿+𝑘2𝑄𝑟
  , which is 

equal to  Q = Qr  for  𝑘2 ≫ 𝛿 𝑄𝑚⁄  , or approximately  𝑘 ≫ 1 𝑄𝑚⁄  . Just for lower piezoactivity, EMQ  

�̃� → 0   for  𝑘 → 0  under non-polarized state when there is no kinetic energy under electrical excitation, 

and the dissipation is caused just by the non-zero dielectric loss – if it’s zero, then always �̃� → 𝑄𝑟   at the 

resonance (all under low electrical excitation field). Note that according to the phenomenological 

restrictions [9], there are no piezoelectric losses when the dielectric losses are zero. 

Following [1], the EMQ far below the fundamental resonance Fr1 , where the conductance G is reaching  

ωCoδ  as in a regular capacitor, EMQ is decreasing reaching zero �̃�(𝑓) →0  under  f → 0   approximately as                    

�̃�(𝑓 → 0) ∝ ~ 
𝑓2

 𝐹𝑟1
2  

𝑘2

𝛿
    (Fig. 5A).  

Based on [1], minimal EMQ �̃� value between harmonics (close to the even-order harmonic where the 

resonator conductance G ≈ ωCoδ ) is constant on the harmonics order and equals  �̃�𝑚𝑖𝑛 ≅

0.5 𝑘2

𝛿−𝑘2(2𝛾−3/2𝑄𝑟)
~

𝑘2

𝛿
  (Fig. 5A) , which is in good agreement with the experiment. Its value can reflect the  δ  

frequency dependence taking place in practice.  To the contrary of high-Q piezotransducers, the extremely 

low-Q resonating system as described above can be used widely in sensing systems, for example. 

 

VI. CONCLUSIONS 

In this study, the electro-mechanical Q-factor (EMQ) has been investigated on the basis of the resonator 

immittance analysis, and the EMQ factor spectra and its maximum/minimum values were specified in a wide 

frequency range, from quasi-static up to high-order harmonics. By a new proposed method to determine the 

resonator EMQ quality factor spectrum, experimentally confirmed the theoretical prediction [1] stating 
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there is the highest quality factor located very near the antiresonance frequencies within the resonance 

bandwidth, which is almost double the value at the fundamental resonance in PZT-5A type piezoceramic.  

 

The theoretical [1] and practical evidence obtained in this paper will benefit the selection of the optimal 

operation frequency for piezoelectric devices from the loss reduction/addition aspects, based on the 

existence of the special driving frequency where EMQ factor reaches maximum/minimum values, 

respectively. More importantly, the explanation provided in this study will help researchers initially 

understand the reason for identifying the most efficient working frequency. General mechanism based on 

existence of the piezoelectric loss component with its specific properties was described for the resonator 

EMQ spectra at different vibrational modes, which can be practically useful in piezoelectric designs with 

both soft and hard piezoceramics providing high and low energy dissipation and damping. No significant 

difference in the EMQ-spectra was found between the rod piezoresonator with the “hard” longitudinal 

vibration mode, and thin and thick disks with the “soft” radial vibration modes. 

 

As an additional benefit, based on the fact of linear EMQ dependence near the resonance, a new method for 

piezoelectric loss factor determination was proposed and developed which requires just frequency 

derivatives determination of the immittance phase at the resonance frequency. Based on the resonator 

EMQ spectrum data and its full characterization at the resonance, the piezoelectric loss factor was 

determined as close to 0.77±0.02 of the upper phenomenological limit, that is playing a critical role in the 

EMQ spectra character and determining optimal practical solutions. Note there is no need in a 

predetermined known (usually) admittance function of an ideal vibrational mode as in the iterative method 

[8]. 
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Nomenclature: 
Fres (Fant)  – “current” resonance(antiresonance) frequency (generalized one designated as Fo ),  
               with a connected in-series (in-parallel) C or L reactive elements as in the method;                
QC/L  –  corresponding resonance(antiresonance) Q-factor (generalized Q-factor Q), with a connected  
               in-series (in-parallel) C or L reactive element;  

�̃�  –  electro-mechanical (EMQ) Q-factor; 
Fr , Qr –  “intrinsic” resonance frequency and Q-factor of piezoelement at the resonance; 
Fa , Qa – “intrinsic” antiresonance frequency and Q-factor of piezoelement at the antiresonance; 
Co ,  C(L)  –  capacitance of the piezoelement and connected to it in-series C = Cser (or in-parallel C = Cpar)  
              capacitance (or inductance L ); 
δr  –  relative resonance-antiresonance frequency interval for a specific piezoelement vibrational mode; 
k –  generalized electro-mechanical coupling factor, depending on the vibrational mode; 
kp and k33  –  specific planar and longitudinal coupling factors; 
Qm –  “mechanical” quality factor of piezoceramic material specified by manufacturer; 
δ  –  dielectric loss factor; 
γ , γo  –  piezoelectric loss factor and its maximum phenomenological limit ( √𝛿 𝑘2𝑄𝑚⁄   ) , respectively; 
Y = G + iB –  complex admittance, with real conductance G and imaginary susceptance B components; 

Z= R + iX –  complex impedance, with real resistance R and imaginary reactance X components (i = √-1); 

           For all them together, Y = 1/Z and both are called also immittance. 

φ  –  immittance phase angle; 
ItanφI  –   immitance  Q-factor  |𝑋| 𝑅 =⁄ |𝐵| 𝐺⁄  , measured by Impedance Analyzer; 
ω = 2π f , n  –  circular frequency and harmonic order number;  
f1 ,  f2  –  extreme frequencies of susceptance B at resonance , or of reactance X at antiresonance; 
χ  –  frequency deviation relative to the resonance (antiresonance); 
LS , CS , RS  and  Cp , rp  – inductance, capacitance and resistant elementary components (series and parallel 
           branches) in the conventional equivalent circuit of a resonator;  
V –  voltage applied to the resonator. 
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